ESRC Conference on Diversity in Macroeconomics: Discussion on Dealing with Complexity and Uncertainty in Macro Dynamics

Marco Raberto¹

February 24th, 2014 ESRC and University of Essex, UK

¹DIME, University of Genova, Italy. Email: marco.rabert@unige.it 📳 📱 🔊 ۹ (

Discussion on *"Endogenous Macro Dynamics From Large Numbers of Simple Agents"* by R. Axtell (I)

- Large-scale (millions of agents) AB macro model
- New and interesting features:
 - team production
 - increasing returns to scale
 - endogenous business cycles caused by labor flows
- Remarkable results:
 - dis-equilibrium at the agent level but steady state at the macro level
 - stylized facts of firms' distributions

Discussion on *"Endogenous Macro Dynamics From Large Numbers of Simple Agents"* by R. Axtell (II)

• Questions:

- what is the added value of the 1-to-1 scale with the US economy?
- could you define better what is the steady state in this model?
- there are capital goods, why we can not observe long-run growth?

• Concerns:

- remind me the approach of real business cycles models
- what about money and debt?
- no credit-driven business cycles ...

Eurozone data (ECB):

Iceace model data:

Sources: ECB, Eurostat and ECB calculations. Notes: Data are for the period between the first quarter of 1990 and the second quarter of 2013. Real series have been derived by deflating nominal series with the GDP deflator.

http://iceace.github.io/home/

The balance sheet perspective in agent-based models (ICEACE)

Agent	Assets	Liabilities
Household	housing X ^h	mortgages, U ^h
abbrev.: Hous	liquidity, M ^h	equity, E ^h
index: $h = 1, \ldots, N_{Hous}$	equity fund shares, V_d^h	
Firm	capital goods, K ^f	debt (loans from banks), D ^f
index: $f = 1, \ldots, N_{Firm}$	inventories, I ^f	equity, E ^f
	liquidity, M ^f	
Construction firm	capital goods, K ^s	debt (loans from banks), D ^s
abbrev.: TFirm	inventories, 1 ^s	equity, E ^s
index: $s = 1, \ldots, N_{TFirm}$	liquidity, M ^s	
Bank	loans, $\mathcal{L}^b = \sum_{f,s} D_b^{f,s}$	private sector deposits, $\mathcal{D}^b = \sum_{h,f,s} M_b^{h,f,s}$
index: $b = 1, \ldots, N_{Bank}$	mortgages, $U^b = \sum_h U^b_h$	debt with the central bank, D ^b
	liquidity, M ^b	equity, E ^b
Equity Fund	liquidity, M ^e	equity, E ^e
abbrev.: Fund	firms' shares, V ^e _f	
index: e	construction firms' shares, V_s^e	
	banks' shares, V_b^e	
Government	liquidity M ^g	debt to the central bank, D ^g
abbrev.: Gov		equity, E ^g
index: g		
Central Bank	liquidity, M ^c	outstanding fiat money
abbrev.: CB	loans to banks, $\mathcal{L}_{b}^{c} = \sum_{b} D^{b}$	banks liquidity, $\sum_{b} M^{b}$
index: c	loans to the government, $\mathcal{L}_{g}^{c} = D^{g}$	government liquidity, M ^g
	°	fund liquidity, M ^e
		equity, E ^c
		· · · · · · · · · · · · · · · · · · ·

Discussion on *"Taking Uncertainty Seriously: Simplicity versus Complexity in Financial Regulation"* by S. Kapadia et al. (I)

- Background:
 - revival of the long debate between risk vs Knightian uncertainty
 - bias-variance trade-off in prediction errors
- Interesting message:
 - in a world with uncertainty, simple heuristics can sometimes perform better than more complex models
 - the variance of the more flexible complex models is often so large for small sample sizes (overfitting) that it overshadows the error of heuristics due to bias
 - less information is more
- Applications:
 - determination of capital requirements for banks
 - prediction of bank failures

Discussion on *"Taking Uncertainty Seriously: Simplicity versus Complexity in Financial Regulation"* by S. Kapadia et al. (II)

- Remarkable results via Monte Carlo simulations on real data bases
 - capital requirements: naive 1/N methods (Basel I) can outperform complex internal ratings Based approach Basel II
 - bank failure prediction: fast and frugal decision trees may outperform regression methods
- Concerns:
 - the leverage ration is not predictiove in the case of US vbanks
 - Goodhart law
 - regulatory arbitrage may be easier with simpler regualtory prisions

Discussion on *"Modern Macroeconomics after the Crisis: Hedgehog or Fox?"* by M. Miller and L. Zhang)

- Review about pecuniary externalities that affect borrowers and lenders balance sheets in procyclical fashion:
 - demand side pro-cyclicality with financial accelerator
 - procyclical changes to risk premia on the supply side,
- Very elegant and technically sophisticated review
- Outlook for future research:
 - how to deal with these concepts in dise-equilibirum?
 - how to endogenize shocks?,

Iceace: ffinancial fragility of households

Iceace: Housing price

Iceace: Mortgages

Iceace: Real GDP and unemployment rate

